quarta-feira, 19 de dezembro de 2018



equivalência estrutura, energia, momentum, fenômenos no sistema decadimensional e categorial Graceli.

e = MFE
X
DECADIMENSIONAL
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D




postulado categorial e decadimensional Graceli.

TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
matriz categorial Graceli.
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D



1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.
4]Energias.
5]Fenômenos.
6]Potenciais.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


Matriz categorial de Graceli.


T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         Dl


Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

[estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
trans-intermecânica de supercondutividade no sistema categorial de Graceli.

EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.

[pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

, [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].


equivalência massa-energia NO SISTEMA DECADIMENSIONAL E CATEGORIAL Graceli.

X
DECADIMENSIONAL 
X
T l    T l     E l       Fl         dfG l   
N l    El                 tf l
P l    Ml                 tfefel 
Ta l   Rl
         Ll
         D


    Em física, a equivalência massa-energia é o conceito de que qualquer massa possui uma energia associada e vice-versa. Na relatividade especial, essa relação é expressa pela fórmula de equivalência massa-energia
    onde
    Nesta fórmula, da autoria de Albert Einsteinc, o valor da velocidade da luz no vácuo, realiza a conversão de quilogramas para joules (já que as grandezas de massa e energia são diferentes).
    Muitas definições de massa na relatividade especial podem ser validadas usando-se esta fórmula, mas se a energia na fórmula é a energia de repouso, então a massa será a massa de repouso.
    Em termos simples, E (Joules) = m (quilogramas) · 299792458 (metros/segundo)².
    A fórmula é atribuída a Albert Einstein, que a publicou em 1905 no artigo 1905 "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? (A inércia de um corpo depende da sua quantidade de energia?)", um dos seus artigos do Annus Mirabilis.[1] Apesar de Einstein não ter sido o primeiro a propor a relação entre massa e energia, e várias fórmulas similares aparecerem antes da teoria de Einstein, ele foi o primeiro a propor que a equivalência da massa e energia é um princípio geral que é uma consequência das simetrias do espaço e tempo.

    238 U 92 ===> 234 Th 90 + 4 He 2 (alfa).
    X
    DECADIMENSIONAL
    X
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    60 Co 27 ===> 60 Ni 28 + e-1 (beta).
    X
    DECADIMENSIONAL
    X
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D





    A radioatividade e o decaimento do núcleo.Que radiação é essa que é emitida pelos materiais radioativos? Nos primeiros tempos de Maria Curie ninguém sabia ao certo mas, em 1899, o jovem físico inglês Ernest Rutherford mostrou que a radiação provém do núcleo e que as substâncias radioativas emitem basicamente três tipos de radiação.
    Partículas alfa. Uma partícula alfa é composta de dois prótons e dois neutrons. Para todos os efeitos, uma alfa é um núcleo do elemento hélio. Isto é, podemos representar uma partícula alfa como 4He2. Como uma alfa tem carga +2 (dois prótons) e um total de 4 partículas (2 prótons + 2 neutrons), um núcleo que cospe (ou emite, se preferir) uma alfa tem seu número atômico diminuído de 2 e seu número de massa diminuído de 4.
    Por exemplo, o urânio-238, cujo número atômico é 92, pode emitir uma alfa e virar o núcleo de outro elemento, o tório-234, com número atômico 90. Isso é uma reação nuclear e é escrita como:


    238 U 92 ===> 234 Th 90 + 4 He 2 (alfa).
    Examine cuidadosamente essa equação nuclear. Veja que o número de massa do elemento à esquerda (238) é igual à soma dos números de massa dos elementos à direita (234 + 4). O mesmo acontece com os números atômicos (92 = 90 + 2). Se não for assim, a equação está errada.
    Uma partícula alfa é tão pesada (relativamente, é claro) que não penetra em nossa pele. No entanto, quem respira um gás radioativo que emite alfas está ferrado. Já estando dentro do pulmão a alfa faz um estrago danado.

    Partículas beta. A radiação beta se constitui de elétrons emitidos pelo núcleo. Elétrons? E um núcleo tem elétrons? Não tem elétrons livres, mas, um neutron, por razões que não precisamos explicar agora, pode virar um próton cuspindo um elétron para fora do núcleo. A carga elétrica total, dessa maneira, é mantida. Como o núcleo perde uma carga negativa (a beta, sendo um elétron, tem carga -1), seu número atômico cresce de uma unidade, pois ganhou um próton a mais. E como a beta é muito levezinha, o número de massa do núcleo fica o mesmo de antes. Veja o exemplo de um núcleo de cobalto-60 virando níquel-60 depois de emitir uma beta:

    60 Co 27 ===> 60 Ni 28 + e-1 (beta).
    Essa reação tem importância histórica pois foi usada para provar que a natureza nem sempre conserva as simetrias. Essa história eu conto outra vez. Além disso, para conservar energia antes e depois da reação, foi inventado um neutrino que seria emitido pelo núcleo durante o processo. Esse neutrino é outro personagem esquisito do qual falarei qualquer dia desses.
    Raios gama. A radiação gama é a nossa velha conhecida radiação eletromagnética, da mesma família que a luz visível, só que muito mais energética e penetrante. É a mais perigosa das três radiações que podem ser emitidas pelos materiais radioativos. Mas, como não tem carga nem massa (só energia, e muita) não muda nem o número atômico Z nem o número de massa A do núcleo radioativo emitente.
    Como vimos antes, um núcleo pesado , com muitos prótons e neutrons, tende a ser instável. Na tentativa de recuperar sua estabilidade, o núcleo emite alfas ou betas e perde a identidade, coitado, vira outro elemento. Esse processo pode ser rápido ou lento, dependendo da estabilidade do núcleo. É aí que entra outro conceito importante: o tempo de vida média do núcleo. É muito fácil entender o que esse tempo significa. Suponha que você tem uma amostra com 100 átomos de um elemento radioativo X. E digamos que, depois de 1 hora, metade desses átomos tenham se transformado, por radioatividade, em átomos de outro elemento Y. Pois bem, diremos que o tempo de vida médio desse elemento X é 1 hora. Em palavras: o tempo de vida médio de um elemento é o tempo necessário (em média) para que metade de uma amostra desse elemento se transforme em outro por radioatividade. Quando um elemento é muito instável, seu tempo de vida média é curto. Dependendo do isótopo considerado, o tempo de vida médio pode ir de frações de segundo a bilhões de anos. O tempo de vida médio de um elemento estável é infinito por definição. Vamos ilustrar esses fatos com o caminho tortuoso que leva um núcleo de urânio-238 até o rádio-226, elemento descoberto pelo casal Curie.
    Acompanhe na figura: o urânio-238, que foi preparado nas fornalhas de uma supernova, chega à Terra e aqui fixa morada. Como seu tempo de vida média é de 4,5 bilhões de anos, ele pode muito bem estar aqui desde que a Terra se formou. A cada 4,5 bilhões de anos, um núcleo desse urânio emite uma alfa e vira um isótopo de tório-234. Observe que 238-4=234 e 92-2=90. Esse tório-234 vive, em média, apenas 24,1 dias, pois logo emite uma beta e vira protactínio-234. Veja que esse protactínio tem o mesmo A do tório de onde veio, mas tem um Z com 1 unidade a mais. Ele vive muito pouco, apenas cerca de 1 minuto. Logo, logo, emite outra beta e volta a ser urânio, só que agora é o urânio-234. Esse vive 245.000 anos mas, acaba emitindo uma alfa e se transformando em outro tório, o tório-230. Que também tem vida longa, agüenta 8.000 anos. Mas, depois emite outra alfa e se transforma no rádio-226, elemento que o casal Curie isolou do resíduo de minérios austríacos.
    O processo não pára por aí, pois o rádio ainda é muito radioativo, como Maria Curie descobriu. Depois de outras idas e vindas pela tabela periódica, o núcleo acaba virando um núcleo de chumbo-206 (206Pb82) e, finalmente, encontra a paz. O chumbo-206 é estável e tem vida eterna.
    Trajetórias como essa, de um elemento radioativo até alcançar a estabilidade, foram catalogadas pelos físicos e químicos desde os tempos dos Curie e hoje são bem conhecidas. Servem para explicar inúmeros fenômenos que ocorrem nas estrelas e planetas e para medir a idade de rochas e material biológico. Como prometí, em breve contarei essa interessante história.



    trans-intermecânica de Emissão protônica no sistema decadimensional e categorial Graceli



    X
    DECADIMENSIONAL
    X
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    X
    DECADIMENSIONAL
    X
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    +
    X
    DECADIMENSIONAL
    X
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    Emissão protônica ou emissão de próton (também conhecida como radiação de próton), é um tipo de radioatividade de decaimento no qual um próton é emitido por um núcleo atômico.
    Alguns exemplos:
    +
    Emissão de prótons pode ocorrer de situados em altos estados excitados em um núcleo posteriormente a um decaimento beta, em cujo caso o processo é conhecido como emissão de próton beta-retardada, ou pode ocorrer do estado basal (ou um situado em baixo isômero) de núcleos ricos em prótons, em cujo caso o processo é muito similar ao decaimento alfa.
    Para um próton escapar de um núcleo, a energia de separação do próton deve ser negativa - o próton é consequentemente desligado, e por tunelamento sai do núcleo em um tempo finito. A emissão de prótons não é vista em isótopos de ocorrência natural; emissores de prótons podem ser produzidos via reações nucleares, normalmente utilizando algum tipo de acelerador de partículas.
    Embora imediata (i.e. não beta-retardada) a emissão de próton foi observada de um isômero em cobalto-53 primeiramente em 1969[1], nenhum outro estado emissor de próton foi encontrado até 1981, quando a radioatividade de estados básicos de prótons do lutécio-151 e túlio-147 foram observadas no GSI na então Alemanha Ocidental.[2] Pesquisas no campo floresceram após esta mudança de cenário, e até o momento, mais de 25 isótopos têm sido encontrados que exibem emissão de prótons.[3] O estudo da emissão de próton tem ajudado o entendimento de deformação nuclear, massas e estrutura, e é um maravilhoso exemplo puro de tunelamento quântico.[4]
    Hoje em dia, aproximadamente 30 diferentes emissões de prótons isolados são conhecidas para núcleos entre números de prótons entre 50 e 84, e o fenômeno é razoavelmente bem entendido tericamente.[5]
    Em 2002, a emissão simultânea de dois prótons foi observada dos núcleo do isótopo ferro-45 em experimentos no GSI e GANIL (Grand Accelerateur National d'Ions Lourds, próximo de Caen).[6] Em 2005 foi experimentalmente determinado (nas mesmas instalações) que zinco-54 pode também apresentar decaimento prótons em dupla.[7]
    Emissões de par de prótons de estados de vida longa, como Ag-94 têm sido evidenciados[8], assim como do 15975Re84, permitindo maior entendimento do comportamento dos núcleos atômicos.[9]


    equivalência estrutura, energia, momentum, fenômenos no sistema decadimensional e categorial Graceli.

    e = MFE
    X
    DECADIMENSIONAL
    X
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.
    4]Energias.
    5]Fenômenos.
    6]Potenciais.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].


    equivalência massa-energia NO SISTEMA DECADIMENSIONAL E CATEGORIAL Graceli.

    X
    DECADIMENSIONAL 
    X
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


      Em física, a equivalência massa-energia é o conceito de que qualquer massa possui uma energia associada e vice-versa. Na relatividade especial, essa relação é expressa pela fórmula de equivalência massa-energia
      onde
      Nesta fórmula, da autoria de Albert Einsteinc, o valor da velocidade da luz no vácuo, realiza a conversão de quilogramas para joules (já que as grandezas de massa e energia são diferentes).
      Muitas definições de massa na relatividade especial podem ser validadas usando-se esta fórmula, mas se a energia na fórmula é a energia de repouso, então a massa será a massa de repouso.
      Em termos simples, E (Joules) = m (quilogramas) · 299792458 (metros/segundo)².
      A fórmula é atribuída a Albert Einstein, que a publicou em 1905 no artigo 1905 "Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? (A inércia de um corpo depende da sua quantidade de energia?)", um dos seus artigos do Annus Mirabilis.[1] Apesar de Einstein não ter sido o primeiro a propor a relação entre massa e energia, e várias fórmulas similares aparecerem antes da teoria de Einstein, ele foi o primeiro a propor que a equivalência da massa e energia é um princípio geral que é uma consequência das simetrias do espaço e tempo.